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Preamble
About the Crypto Asset Service Provider (CASP)

Name of the CASP: AMINA (Austria) Aktiengesellschaft
Street and number: Seestrasse 6/13

City: Bregenz

Country: Austria

LEl: 529900514LYIFW7GKB54

About this report

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5).
This requirement obliges crypto asset service providers to disclose significant adverse factors
affecting the climate and the environment. In particular, this disclosure complies with the
requirements of “Commission Regulation (EU) 2025/422 of December 17, 2024, supplementing
Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory
technical standards specifying the content, methods and presentation of information relating to
sustainability indicators related to climate-related and other environmental impacts.” The optional
information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This report is valid until material changes occur in the data, which will result in an immediate
adjustment of this report.

Overview

This is an overview of the core indicator energy consumption but does not represent the reporting
according to MiCAR 66 (5). Please find the full disclosure below.

# |Crypto-Asset Name :::;)épto-Asset Energy consumption (kWh per cale;edaar;
1 |Bitcoin VI5WLZMF 234,260,408,043.44
2 |Bitcoin Cash 919BF3W7L 1,030,383,615.40
3 |Solana SOL 6QZ1LNC12 6,345,525.00
4 'T”;Eerget Computer ADHTMSD7P 5,834,160.00
5 |Ethereum Eth D5RG2FHHO 2,168,888.40
6 |Toncoin KK12JMBTX 1,402,695.00
7 INEAR Protocol MXXM5970T 920,007.89
8 |Avalanche AVAX S6JCBF/0N 824,250.92
9 |Cardano ADA 76QS7QCXB 785,509.20
10|Polkadot DOT SGDONLTRG 630,720.00
11|USDC TJIWK5QTRK 514,194.88
12 |Kusama PX4GCX5B5 474,616.80
13|Ripple XRP 42PH|B2BS 299,638.07
14|Tezos FLJPFRIRS 282,247.36
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# |Crypto-Asset Name E;)épto-Asset Energy consumption (kWh per cale;edaar;
15|Polygon POL GB8DQ8DWN 91,126.52
16|Hedera HBAR 2WWB8QS47 82,133.21
17|Stellar Lumen ZCN8SR2H7 52,560.00
18| ChainLink Token 3R3J70FDR 10,269.07
19|Aave Token H618RN577 4,043.21
20|Synthetix Network RSN265S0SB 3,847.63
21 {Uniswap XMB84LZBZ 3,088.52
22 |Euro Coin / 894.58
23|yearn finance LS5673QRX 301.06
24 [ Pyth Network 3980Q2CPS 121.37

Sustainability indicators

Bitcoin

Quantitative information

Field Value Unit
51 Name Adengeselichan| !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Bitcoin /
fé?afeesginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 234260408043.44470| kwh/a
S.10 Renewable energy consumption 29.3064250422 %
S.11 Energy intensity 8.62502 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 96514365.43967| tCO2e
S.14 GHG intensity 3.55347| kgCO2e

Qualitative information

S.4 Consensus Mechanism
Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve
distributed consensus among its nodes. Here's a detailed breakdown of how it works:
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Core Concepts:

1. Nodes and Miners:

- Nodes: Nodes are computers running the Bitcoin software that participate in the network by
validating transactions and blocks.

- Miners: Special nodes, called miners, perform the work of creating new blocks by solving
complex cryptographic puzzles.

2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of
blocks. Each block contains a list of transactions, a reference to the previous block (hash), a
timestamp, and a nonce (a random number used once).

3. Hash Functions: Bitcoin uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random.

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds.

2. Mining and Block Creation:

- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's
data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes.

- Proof of Work: The process of finding this nonce is computationally intensive and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network.

3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain and the process starts again with the next block.

4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In the case of multiple valid chains (forks), the network will eventually resolve the fork by
continuing to mine and extending one chain until it becomes longer.

For the calculation of the corresponding indicators, the additional energy consumption and the
transactions of the Lightning Network have also been taken into account, as this reflects the
categorization of the Digital Token Identifier Foundation for the respective functionally fungible
group (“FFG") relevant for this reporting. If one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher.

S.5 Incentive Mechanisms and Applicable Fees
Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain relies on a Proof-of-Work (PoW) consensus mechanism to ensure the
security and integrity of transactions. This mechanism involves economic incentives for miners and
a fee structure that supports network sustainability:
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Incentive Mechanisms:

1. Block Rewards:

- Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created
bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward
was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as
the "halving."

- Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at
21 million, creating scarcity and potentially increasing value over time.

2. Transaction Fees:

- User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their
transaction in a block. These fees are crucial, especially as the block reward diminishes over
time due to halving.

- Fee Market: Transaction fees are determined by the market, where users compete to have their
transactions processed quickly. Higher fees typically result in faster inclusion in a block,
especially during periods of high network congestion.

For the calculation of the corresponding indicators, the additional energy consumption and the
transactions of the Lightning Network have also been taken into account, as this reflects the
categorization of the Digital Token Identifier Foundation for the respective functionally fungible
group (“FFG") relevant for this reporting. If one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTl) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
lightning_network is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
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empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Bitcoin Cash

Quantitative information

Field Value Unit
AMINA (Austria)

>1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Bitcoin Cash /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 1030383615.40350| kWh/a
S.10 Renewable energy consumption 29.3064250422 %
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Field Value Unit
S.11 Energy intensity 0.18176 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 42451399121 tCO2e
S.14 GHG intensity 0.07488| kgCO2e

Qualitative information

S.4 Consensus Mechanism
Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain network uses a consensus mechanism called Proof of Work (PoW) to
achieve distributed consensus among its nodes. It originated from the Bitcoin blockchain, hence has
the same consensus mechanisms but with a larger block size, which makes it more centralized.

Core Concepts:

1. Nodes and Miners:

- Nodes: Nodes are computers running the Bitcoin Cash software that participate in the network
by validating transactions and blocks.

- Miners: Special nodes, called miners, perform the work of creating new blocks by solving
complex cryptographic puzzles.

2. Blockchain: The blockchain is a public ledger that records all Bitcoin Cash transactions in a series
of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a
timestamp, and a nonce (a random number used once).

3. Hash Functions: Bitcoin Cash uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random.

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds.

2. Mining and Block Creation:

- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's
data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes.

- Proof of Work: The process of finding this nonce is computationally intensive and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network.

3. Block Validation and Addition:

- Other nodes in the network verify the new block to ensure the hash is correct and that all
transactions within the block are valid.

- If the block is valid, nodes add it to their copy of the blockchain and the process starts again with
the next block.

4. Chain Consensus:

- The longest chain (the chain with the most accumulated proof of work) is considered the valid
chain by the network. Nodes always work to extend the longest valid chain.
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- In the case of multiple valid chains (forks), the network will eventually resolve the fork by
continuing to mine and extending one chain until it becomes longer.

Smart Bitcoin Cash (SmartBCH) operates as a sidechain to Bitcoin Cash (BCH), leveraging a hybrid
consensus mechanism combining Proof of Work (PoW) compatibility and validator-based validation.

Core Components:

- Proof of Work Compatibility: SmartBCH relies on Bitcoin Cash's PoW for settlement and security,
ensuring robust integration with BCH's main chain. SHA-256 Algorithm: Uses the same SHA-256
hashing algorithm as Bitcoin Cash, allowing compatibility with existing mining hardware and
infrastructure.

- Consensus via Validators: Transactions within SmartBCH are validated by a set of validators
chosen based on staking and operational efficiency. This hybrid approach combines the hash
power of PoW with a validator-based model to enhance scalability and flexibility.

S.5 Incentive Mechanisms and Applicable Fees
Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain operates on a Proof-of-Work (PoW) consensus mechanism, with
incentives and fee structures designed to support miners and the overall network's sustainability:

Incentive Mechanism:

1. Block Rewards:

- Newly Minted Bitcoins: Miners receive a block reward, which consists of newly created bitcoins
for successfully mining a new block. Initially, the reward was 50 BCH, but it halves approximately
every four years in an event known as the "halving."

- Halving and Scarcity: The halving ensures that the total supply of Bitcoin Cash is capped at 21
million BCH, creating scarcity that could drive up value over time.

2. Transaction Fees:

- User Fees: Each transaction includes a fee, paid by users, that incentivizes miners to include the
transaction in a new block. This fee market becomes increasingly important as block rewards
decrease over time due to the halving events.

- Fee Market: Transaction fees are market-driven, with users competing to get their transactions
included quickly. Higher fees lead to faster transaction processing, especially during periods of
high network congestion.

Applicable Fees:

1. Transaction Fees:

Bitcoin Cash transactions require a small fee, paid in BCH, which is determined by the
transaction's size and the network demand at the time. These fees are crucial for the continued
operation of the network, particularly as block rewards decrease over time due to halvings.

2. Fee Structure During High Demand:

In times of high congestion, users may choose to increase their transaction fees to prioritize their
transactions for faster processing. The fee structure ensures that miners are incentivized to
prioritize higher-fee transactions.

SmartBCH's incentive model encourages validators and network participants to secure the
sidechain and process transactions efficiently.
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Incentive Mechanisms:

- Validator Rewards: Validators are rewarded with a share of transaction fees for their role in
validating transactions and maintaining the network.

- Economic Alignment: The system incentivizes validators to act in the network's best interest,
ensuring stability and fostering adoption through economic alignment.

Applicable Fees:

Transaction Fees: Fees for transactions on SmartBCH are paid in BCH, ensuring seamless
integration with the Bitcoin Cash ecosystem.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
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used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Solana SOL

Quantitative information

Field Value| Unit
51 Name Atengeselischan| !
S.2 Relevant legal entity identifier 529900514LYIFW7GKB54 /
S.3 Name of the crypto-asset Solana SOL /
Séﬁ}a?eesginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 6345525.00000| kWh/a
S.10 Renewable energy consumption 32.7956468965 %
S.11 Energy intensity 0.00000 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 2150.30229| tCO2e
5.14 GHG intensity 0.00000| kgCO2e

Sustainability indicators according to MiCAR 66 (5)
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Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator’s stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.
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2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
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3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
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“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/

grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Internet Computer Token 1505

Quantitative information

Field Value Unit
S1 Name Aiengeselicnan| !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Internet Computer Token /
Eé?afssginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 5834160.00000| kWh/a
S.10 Renewable energy consumption 30.5150000000 %
S.11 Energy intensity 0.00720 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 2047.79016| tCO2e
S.14 GHG intensity 0.00253]| kgCO2e

Qualitative information

S.4 Consensus Mechahism

The Internet Computer Protocol (ICP) uses a unique consensus mechanism called Threshold Relay
combined with Chain Key Technology to ensure decentralized, scalable, and secure operations for

its network.
Core Components of ICP's Consensus Mechanism:

1. Threshold Relay:

Threshold Relay is a consensus protocol that enables the network to achieve finality without a

traditional Proof-of-Work or Proof-of-Stake mechanism. It leverages a group of nodes called
"the committee" to generate a random beacon that is used for the selection of the next block
producer. The protocol is designed to provide scalability and speed while maintaining
decentralization by allowing any node to join the consensus process. The key feature of
Threshold Relay is that it utilizes a threshold signature scheme, where a group of nodes must
collaborate to create a valid signature, ensuring that consensus is achieved even in the
presence of faulty or malicious nodes.

2. Chain Key Technology:

Chain Key Technology is used to manage the state of the Internet Computer, allowing it to scale
effectively across a vast number of nodes while still providing fast and secure transaction
finality. This technology enables the creation and management of many independent
blockchains (also known as subnet blockchains), each with its own set of validators. Chain Key
Technology allows the Internet Computer to support billions of smart contracts without
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compromising speed, as it facilitates quick communication between the subnets and enables
cross-chain interoperability.
3. Canister Smart Contracts:

- The Internet Computer utilizes a decentralized model where the computation of canister smart
contracts (which hold the application logic) occurs across different nodes in the network. These
canisters can run autonomously and scale with the network’s growth.

- Finality and Security: The consensus mechanism ensures finality once a transaction is validated,
meaning that once a block is added, it cannot be reverted, providing the security required for
high-stakes applications. The use of Threshold Relay provides robust Byzantine Fault Tolerance
(BFT), enabling the network to tolerate faulty or malicious behavior without compromising
network integrity.

S.5 Incentive Mechanisms and Applicable Fees

The Internet Computer Protocol (ICP) incentivizes network participants (validators, node operators,
and canister developers) through various reward mechanisms and transaction fees. Here's a
breakdown of the incentive mechanisms and applicable fees related to ICP:

Incentive Mechanism:

1. Network Participation and Rewards:

- Validators: Validators are crucial for maintaining the integrity and security of the network. They
stake ICP tokens to participate in consensus and are rewarded for validating blocks, maintaining
the integrity of the decentralized network, and ensuring its performance. Rewards for validators
are based on their participation in the consensus mechanism and their stake in the network.

- Node Operators: Node operators who maintain the physical infrastructure of the network (such
as hardware and server resources) are also rewarded. These operators run the nodes that
participate in the Threshold Relay and provide computational power to the network.

2. Canister Developers and Network Participants:

- Canister Smart Contracts: Developers of canisters (smart contracts) on the Internet Computer
are incentivized through the creation of decentralized applications (dApps). Developers may
also benefit from transaction fees generated by the usage of their dApps and the deployment
of smart contracts on the network.

- Usage Fees: Users of decentralized applications (dApps) or canisters are incentivized to pay for
their usage through fees. These fees are often paid in ICP tokens, and developers can receive a
share of these fees based on the usage of their deployed applications.

3. Governance:

The ICP Token is used for governance via the Network Nervous System (NNS), where holders of
ICP tokens participate in decisions regarding the protocol, such as network upgrades, incentive
adjustments, and the allocation of funds. Token holders are rewarded with the ability to
influence the future of the network.

4. Staking Rewards:

Staking: ICP token holders can participate in staking their tokens in the NNS, which influences
network consensus and governance. By participating in staking, they help secure the network
and are rewarded with staking rewards (a form of passive income). The staking rewards are
given to token holders who participate in securing the network via the NNS.

Applicable Fees:

1. Transaction Fees:
- Canister Calls: Every interaction with a canister (smart contract) on the Internet Computer incurs
a transaction fee. These fees are typically paid in ICP tokens and are used to cover the
computational resources required to process requests, store data, and manage execution.
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- Fee Structure: Transaction fees depend on the complexity and resources consumed by the
canister call or network operation. For example, operations that require more computational
power or data storage may incur higher fees.

2. Storage Fees:

Canister Data Storage: Developers and users who deploy applications on the Internet Computer
are required to pay fees for storing data. These fees ensure that network resources are used
efficiently and that canisters do not waste storage space. The cost of storage is typically paid in
ICP tokens.

3. Governance Participation Fees:

Voting and Proposal Fees: Participation in the governance process via the NNS (Network Nervous
System) may require a small fee, depending on the type of governance action (such as
submitting a proposal or voting). These fees ensure that governance is distributed and prevent
spam attacks on the governance system.

4. Node and Validator Fees:

Fees for Node Operations: Node operators who provide computational power to the network
may incur costs related to maintaining hardware and operating nodes. These fees are partially
offset by rewards for providing network resources.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
internet_computer is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
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If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Ethereum Eth $

Quantitative information

Field Value Unit
51 Name Atengeselscnatt| !
S.2 Relevant legal entity identifier 529900514LYIFW7GKB54 /
S.3 Name of the crypto-asset Ethereum Eth /
fé?a?eesginnmg of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 2168888.40000( kWh/a
S.10 Renewable energy consumption 32.2255486008 %
S.11 Energy intensity 0.00008 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 721.83441| tCO2e
S.14 GHG intensity 0.00003| kgCO2e
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Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
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This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Toncoin

Quantitative information

Field Value Unit
51 Name Adtengeselichan| !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Toncoin /
Eé?afeesginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 1402695.00000| kWh/a
S.10 Renewable energy consumption 32.2255486008 %
S.11 Energy intensity 0.00003 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 466.83523| tCO2e
S.14 GHG intensity 0.00001| kgCO2e
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Qualitative information

S.4 Consensus Mechanism

Toncoin utilizes a Proof of Stake (PoS) model with the Catchain consensus algorithm to provide a
secure, scalable, and efficient multi-chain environment.

Core Components of Toncoin's Consensus:

1. Proof of Stake (PoS) with Validators:

Validator Role: Validators are required to stake Toncoin to participate in consensus. They validate

transactions and secure the network by processing blocks and maintaining network integrity.
2. Catchain Consensus Algorithm:

- High Scalability and Speed: The Catchain consensus protocol is specifically designed for
Toncoin's multi-chain architecture, optimizing for fast and scalable operations across multiple
shards.

- Multi-Chain Compatibility: Catchain supports a sharded environment, allowing different chains
(or shards) to reach consensus efficiently. This approach enhances the network's ability to
process a high volume of transactions in parallel.

3. Byzantine Fault Tolerance (BFT):

Fault Tolerance: The Catchain protocol is Byzantine Fault Tolerant (BFT), meaning it can tolerate
some level of malicious or faulty behavior among validators. This BFT compliance ensures that
the network remains secure and functional even when a minority of validators act maliciously.

4. Validator Rotation and Slashing:

- Regular Rotation: Validators are rotated regularly to enhance decentralization and security. This
system prevents any single validator or group from maintaining control over consensus
indefinitely.

- Slashing for Malicious Behavior: Validators who act maliciously or fail to perform their duties may
be penalized through slashing, losing a portion of their staked Toncoin. This discourages
dishonest behavior and promotes reliable network participation.

S.5 Incentive Mechanisms and Applicable Fees

Toncoin incentivizes network security, participation, and efficiency through staking rewards,
transaction fees, and slashing penalties.

Incentive Mechanisms:

1. Staking Rewards for Validators:

Rewards for Securing the Network: Validators earn staking rewards for actively participating in the
network’s consensus process and ensuring its security. These rewards are provided in Toncoin
and are proportional to each validator's staked amount, encouraging validators to maintain
their roles responsibly.

2. Transaction Fees:

Ongoing Income for Validators: Validators also receive a share of transaction fees from the blocks
they validate, providing a consistent reward that grows with network usage. This additional
income incentivizes validators to process transactions accurately and efficiently.

3. Decentralization through Validator Rotation:

Fair and Balanced Participation: The frequent rotation of validators ensures that new participants
can join the validator set, promoting decentralization and preventing monopolization of the
network by a small group of validators.
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4. Slashing Mechanism:
Penalties for Dishonest Behavior: To maintain security, Toncoin enforces a slashing mechanism
that penalizes validators who act maliciously or fail to fulfill their duties. This risk of losing staked
Toncoin encourages validators to behave honestly and fulfill their responsibilities.

Applicable Fees:

Transaction Fees: Transaction fees on the TON blockchain are paid in Toncoin. These fees vary
based on transaction complexity and network demand, ensuring that validators are compensated
for their work and that resources are efficiently utilized.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.
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Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/

grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

NEAR Protocol N

Quantitative information

Field Value| Unit
51 Name Adtengeselichan| !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset NEAR Protocol /
Eé?ai%ssginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 920007.89455| kWh/a
S.10 Renewable energy consumption 31.8060424379 %
S.11 Energy intensity 0.00001 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 309.81922| tCO2e
S.14 GHG intensity 0.00000| kgCO2e

Qualitative information

S.4 Consensus Mechanism

NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and

security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to

ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,

incentivizing broad participation in network security.
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3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.
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2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

S.5 Incentive Mechanisms and Applicable Fees
NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.
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- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.
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3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a
fraction of the energy consumption of the network is attributed to the token, which is determined
based on the activity of the crypto-asset within the network. When calculating the energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best

Sustainability indicators according to MiCAR 66 (5) 27



effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Avalanche AVAX G

Quantitative information

Field Value Unit
AMINA (Austria)

>1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Avalanche AVAX /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 824250.92354| kwWh/a
S.10 Renewable energy consumption 30.8679973961 %

Sustainability indicators according to MiCAR 66 (5) 28



Field Value Unit
S.11 Energy intensity 0.00005 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 309.47804( tCO2e
S.14 GHG intensity 0.00002| kgCO2e

Qualitative information

S.4 Consensus Mechanism
Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

The Avalanche X-Chain uses the Avalanche consensus protocol, which relies on repeated
subsampling of validators to reach agreement on transactions.

S.5 Incentive Mechanisms and Applicable Fees
Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.
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1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Validator incentives on the X-Chain are indirect and come from network-wide AVAX issuance.
Transaction fees are fixed and burned to prevent spam and reduce the total supply of AVAX over
time

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:
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For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, avalanche_x_chain is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
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[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/

grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Cardano ADA

Quantitative information

Field Value Unit
51 Name engeselschan] !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Cardano ADA /
fé?aiesginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 785509.20000| kWh/a
S.10 Renewable energy consumption 31.8059441814 %
S.11 Energy intensity 0.00026 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 26452567 tCO2e
S.14 GHG intensity 0.00009| kgCO2e

Qualitative information

S.4 Consensus Mechahism

Core Components: Cardano uses the Ouroboros consensus mechanism, a Proof of Stake (PoS)

protocol designed for scalability, security, and energy efficiency.

Core Concepts:

1. Proof of Stake (PoS): Validators (called slot leaders) are selected based on the amount of ADA

Sustainability indicators according to MiCAR 66 (5)

they have staked, rather than solving complex computational puzzles. Validators propose and
validate blocks, which are added to the blockchain.

. Epochs and Slot Leaders: Cardano divides time into epochs (fixed time periods), each of which is
subdivided into slots. Slot leaders are selected for each slot to validate and propose blocks. Slot
leaders are chosen randomly based on the amount of ADA staked. More stake increases the
probability of being selected. Validators are responsible for confirming transactions during their
slot and passing the block to the next slot leader.

. Delegation and Staking Pools: ADA holders can delegate their tokens to staking pools, which
increases the pool's chances of being selected to validate a block. The pool operator and
delegators share the rewards based on their stakes. This system ensures that participants who do
not want to operate a full validator node can still earn rewards and contribute to network security
by supporting trusted staking pools.

. Security and Adversary Resistance: Ouroboros ensures security even in the presence of potential
attacks. It assumes that adversaries may attempt to propagate alternative chains or send
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arbitrary messages. The protocol is secure as long as more than 51% of the staked ADA is
controlled by honest participants. Settlement Delay: To protect against adversarial attacks, the
new slot leader must consider the last few blocks as transient. Only the blocks preceding these
are treated as finalized, ensuring that chain finality is secure against manipulation attempts. This
mechanism also allows participants to temporarily go offline and resynchronize as long as they
are not disconnected for more than the settlement delay period.

5. Chain Selection: Cardano's nodes adopt the longest valid chain rule: each node stores a local
copy of the blockchain and replaces it with any discovered valid, longer chain. This ensures that all
nodes eventually converge on a single version of the blockchain, maintaining network consistency.

S.5 Incentive Mechanisms and Applicable Fees

Cardano uses incentive mechanisms to ensure network security and decentralization through
staking rewards, slashing mechanisms, and transaction fees.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

- Validators, known as slot leaders, secure the network by validating transactions and creating
new blocks. To participate, validators must stake ADA, and those with larger stakes are more
likely to be selected as slot leaders.

- Validators are rewarded with newly minted ADA and transaction fees for successfully producing
blocks and validating transactions.

- Delegators, who may not wish to run a validator node, can delegate their ADA to staking pools.
By doing so, they contribute to the network's security and earn a share of the rewards earned
by the pool. The rewards are distributed proportionally based on the amount of ADA delegated.

2. Slashing Mechanism:

- To prevent malicious behavior, Cardano employs a slashing mechanism. Validators who act
dishonestly, fail to validate transactions properly, or produce incorrect blocks face penalties
that involve the slashing of a portion of their staked ADA.

- This provides strong economic incentives for validators to act honestly and ensures the
network's integrity and security.

3. Delegation and Pool Operation:

- Staking pools can charge operation fees (a margin on rewards) to maintain their infrastructure.
This includes fixed costs set by pool operators. Delegators earn rewards after pool fees are
deducted, providing a balanced incentive for both operators and delegators to participate
actively.

- Rewards are distributed at the end of each epoch, where staking pool performance and
participation determine the distribution of ADA rewards to all stakeholders.

Applicable Fees:

1. Transaction Fees:

- Transaction fees on Cardano are paid in ADA and are generally low. They are calculated based
on the size of the transaction and the network's current demand. These fees are paid to
validators for including transactions in new blocks.

- The fee formula is: a + b x size, where a is a constant (typically 0.155381 ADA), b is a coefficient
related to the transaction size (0.000043946 ADA/byte), and size refers to the transaction size
in bytes. This ensures that the fee adapts based on network load and the size of each
transaction.
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2. Staking Pool Fees:

- Staking pool operators charge operational costs and a margin fee, which covers the cost of
running and maintaining the staking pool. These fees vary between pools but ensure that
operators can continue to provide their services while offering rewards to delegators.

- After the operator's fee, the remaining rewards are distributed among the delegators based on
the size of their stake.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
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Polkadot DOT

Quantitative information

Field Value Unit
51 Name Aiengeselichan| !
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Polkadot DOT /
fé?atBeeSginning of the period to which the disclosure 2024-10-22 /
S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 630720.00000| kwWh/a
S.10 Renewable energy consumption 33.1727326429 %
S.11 Energy intensity 0.00030 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 186.14368| tCO2e
S.14 GHG intensity 0.00009]| kgCO2e

Qualitative information

S.4 Consensus Mechanism
Polkadot DOT is present on the following networks: Astar, Polkadot.

Astar uses a hybrid consensus mechanism that combines Proof of Stake (PoS) and Delegated Proof
of Stake (DPoS), with the added feature of Sharded Multichain capabilities. The primary goal is to
provide a scalable, interoperable, and decentralized platform for building decentralized applications
(dApps), which can run on multiple blockchains in parallel.

Key Features of Astar's Consensus Mechanism:

1. Proof of Stake (PoS): In Astar, validators participate by staking ASTR tokens, the native currency of
the network. The more tokens staked, the higher the chances of being selected as a validator.
Validators are responsible for validating transactions and securing the network. Validators receive
block rewards for their efforts, which are paid in ASTR tokens.

2. Delegated Proof of Stake (DP0S): Astar incorporates DPoS to allow ASTR token holders to vote for
validators. Token holders delegate their voting power to trusted validators, who then produce
blocks and validate transactions. This ensures greater decentralization by allowing the community
to have a direct say in who validates the network. Delegators receive a share of the block rewards
earned by their selected validators.

3. Sharded Multichain: Astar’s consensus mechanism allows for multichain execution via Parachains
in the Polkadot ecosystem, enabling Astar to process multiple parallel chains and increase
scalability. This sharding mechanism ensures that Astar can scale effectively, maintaining high
throughput while decentralizing the network.
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4. Finality: Astar leverages Polkadot's GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix
Agreement) finality gadget for fast and deterministic finality. Once a block is finalized, it is
irreversible, ensuring the integrity and security of transactions.

Polkadot, a heterogeneous multi-chain framework designed to enable different blockchains to
interoperate, uses a sophisticated consensus mechanism known as Nominated Proof-of-Stake
(NPoS). This mechanism combines elements of Proof-of-Stake (PoS) and a layered consensus model
involving multiple roles and stages.

Core Components:

1. Validators: Validators are responsible for producing new blocks and finalizing the relay chain,
Polkadot's main chain. They stake DOT tokens and validate transactions, ensuring the security and
integrity of the network.

2. Nominators: Nominators delegate their stake to trusted validators, choosing which validators they
believe will act honestly and effectively. They share in the rewards and penalties of the validators
they nominate.

3. Collators: Collators maintain parachains (individual blockchains that connect to the Polkadot relay
chain) by collecting transactions from users and producing state transition proofs for validators.

4. Fishermen: Fishermen monitor the network for malicious activity. They report bad behavior to the
validators to help maintain network security.

Consensus Process: Polkadot's consensus mechanism operates through a combination of two key
protocols: GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) and BABE (Blind
Assignment for Blockchain Extension).

1. BABE (Block Production): BABE is the block production mechanism. It operates similarly to a
lottery, where validators are pseudo-randomly assigned slots to produce blocks based on their
stake. Each validator signs the blocks they produce, which are then propagated through the
network.

2. GRANDPA (Finality): GRANDPA is the finality gadget that provides a higher level of security by
finalizing blocks after they are produced. Unlike traditional blockchains where blocks are
considered final after a number of confirmations, GRANDPA allows for asynchronous finality.
Validators vote on chains, and once a supermajority agrees, the chain is finalized instantly.

Detailed Steps:

1. Block Production (BABE):
- Slot Allocation: Validators are selected to produce blocks in specific time slots.
- Block Proposal: The selected validator for a slot proposes a block, including new transactions
and state changes.
2. Block Propagation and Preliminary Consensus: Proposed blocks are propagated across the
network, where other validators verify the correctness of the transactions and state transitions.
3. Finalization (GRANDPA):
- Voting on Blocks: Validators vote on the chains they believe to be the correct history.
- Supermajority Agreement: Once more than two-thirds of validators agree on a block, it is
finalized.
- Instant Finality: This finality process ensures that once a block is finalized, it is irreversible and
becomes part of the canonical chain.
4. Rewards and Penalties: Validators and nominators earn rewards for participating in the
consensus process and maintaining network security. Misbehavior, such as producing invalid
blocks or being offline, results in penalties, including slashing of staked tokens.
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S.5 Incentive Mechanisms and Applicable Fees
Polkadot DOT is present on the following networks: Astar, Polkadot.

Astar incentivizes network participation through block rewards, transaction fees, and staking
rewards while encouraging governance via delegated voting.

Incentive Mechanism:

1. Staking Rewards: Validators earn ASTR tokens for validating transactions and securing the
network. The more tokens staked, the higher the chances of validating blocks.

2. Delegated Proof of Stake (DPoS): ASTR token holders can delegate their tokens to validators,
sharing in the rewards based on the performance of their chosen validators.

3. Cross-Chain dApp Rewards: Developers deploying dApps on Astar earn rewards for using the
network's multichain capabilities.

4. Governance Participation: ASTR token holders participate in on-chain governance to vote on
proposals and protocol changes.

Applicable Fees:

1. Transaction Fees: Users pay fees in ASTR tokens for transactions. These are collected by
validators who process the transactions.

2. dApp Execution Fees: Developers pay for smart contract execution based on resource demands.

3. Cross-Chain Fees: Additional fees apply for asset transfers and interactions between different
blockchain networks.

4. Parachain Slot Fees: Astar incurs fees for its parachain slot on the Polkadot network to ensure
interoperability.

Polkadot uses a consensus mechanism called Nominated Proof-of-Stake (NPoS), which involves a
combination of validators, nominators, and a unique layered consensus process to secure the
network:

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are responsible for producing new blocks and finalizing the relay
chain. They are incentivized with staking rewards, which are distributed in proportion to their
stake and their performance in the consensus process. Validators earn these rewards for
maintaining uptime and correctly validating transactions.

- Commission: Validators can set a commission rate that they charge on the rewards earned by
their nominators. This incentivizes them to perform well to attract more nominators.

2. Nominators:

- Delegation: Nominators stake their tokens by delegating them to trusted validators. They share
in the rewards earned by the validators they support. This mechanism incentivizes nominators
to carefully choose reliable validators.

- Rewards Distribution: The rewards are distributed among validators and their nominators based
on the amount of stake contributed by each party. This ensures that both parties are
incentivized to maintain the network’s security.

3. Collators:

Parachain Maintenance: Collators maintain parachains by collecting transactions and producing
state transition proofs for validators. They are incentivized through rewards for their role in
keeping the parachain operational and secure.
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4. Fishermen:

Monitoring: Fishermen are responsible for monitoring the network for malicious activities. They
are rewarded for identifying and reporting malicious behavior, which helps maintain the
network’s security.

5. Economic Penalties:

- Slashing: Validators and nominators face penalties in the form of slashing if they engage in
malicious activities such as double-signing or being offline for extended periods. Slashing
results in the loss of a portion of their staked tokens, which serves as a strong deterrent against
bad behavior.

- Unbonding Period: To withdraw staked tokens, participants must go through an unbonding
period during which their tokens are still at risk of being slashed. This ensures continued
network security even when validators or nominators decide to exit.

Fees on the Polkadot Blockchain:

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Polkadot are dynamic, adjusting based on network demand
and the complexity of the transaction. This model ensures that fees remain fair and
proportional to the network’s usage.

- Fee Burn: A portion of the transaction fees is burned (permanently removed from circulation),
which helps to control inflation and can potentially increase the value of the remaining tokens.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Polkadot are based

on the computational resources required. This encourages efficient use of network resources.
3. Parachain Slot Auction Fees:

Bidding for Slots: Projects that want to secure a parachain slot must participate in a slot auction.
They bid DOT tokens, and the highest bidders win the right to operate a parachain for a
specified period. This process ensures that only serious projects with significant backing can
secure parachain slots, contributing to the network's overall quality and security.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) astar is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
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in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

uUsDC ©®

Quantitative information

Field Value Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 529900514LYIFW7GKB54 /
S.3 Name of the crypto-asset usDC /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
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Field Value Unit
S.8 Energy consumption 514194.87578| kWh/a
S.10 Renewable energy consumption 31.7476876242 %
S.11 Energy intensity 0.00001 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 181.75610| tCO2e
5.14 GHG intensity 0.00000| kgCO2e

Qualitative information

S.4 Consensus Mechanism

USDC is present on the following networks: Algorand, Aptos Coin, Arbitrum, Avalanche, Base, Celo,
Ethereum, Flow, Hedera Hbar, Linea, Near Protocol, Optimism, Polygon, Ripple, Solana, Sonic,
Statemint, Stellar, Sui, Tron, Zksync.

The Algorand blockchain utilizes a consensus mechanism termed Pure Proof-of-Stake (PPOS).
Consensus, in this context, describes the method by which blocks are selected and appended to the
blockchain. Algorand employs a verifiable random function (VRF) to select leaders who propose
blocks for each round.

Upon block proposal, a pseudorandomly selected committee of voters is chosen to evaluate the
proposal. If a supermajority of these votes are from honest participants, the block is certified. What
makes this algorithm a Pure Proof of Stake is that users are chosen for committees based on the
number of algos in their accounts. This system leverages random committee selection to maintain
high performance and inclusivity within the network.

The consensus process involves three stages:

1. Propose: A leader proposes a new block.
2. Soft Vote: A committee of voters assesses the proposed block.
3. Certify Vote: Another committee certifies the block if it meets the required honesty threshold.

Aptos utilizes a Proof-of-Stake approach combined with a BFT consensus protocol to ensure high
throughput, low latency, and secure transaction processing.

Core Components:

- Parallel Execution: Transactions are processed concurrently using Block-STM, a parallel execution
engine, enabling high performance and scalability.

- Leader-Based BFT: A leader is selected among validators to propose blocks, while others validate
and finalize transactions.

- Dynamic Validator Rotation: Validators are rotated regularly, enhancing decentralization and
preventing collusion.

- Instant Finality: Transactions achieve finality once validated, ensuring that they are irreversible.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).
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Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using
Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only
validated by the execution clients. The so-called sequencer regularly bundles stacks of L2
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transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus
mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to
L1.

Celo uses a Proof of Stake (PoS) consensus model, which supports a decentralized, community-
driven approach to governance and network security.

Core Components of Celo’s Consensus:

1. Proof of Stake (PoS):

Validator Role: Validators are responsible for creating new blocks, validating transactions, and
maintaining the security and integrity of the network. Validators are selected based on the
amount of CELO tokens they hold and stake, incentivizing honest participation and network
reliability.

2. Decentralized Governance:

Community Voting: Governance on Celo is decentralized, allowing CELO token holders to vote on
proposals and changes to the network. This community-driven approach ensures that token
holders have a say in the network’s development and strategic direction.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Flow employs a Proof of Stake (PoS) model with a multi-role node architecture and the HotStuff
Byzantine Fault Tolerant (BFT) protocol to achieve high throughput, scalability, and fast finality.

Core Components of Flow's Consensus:

1. Proof of Stake with Multi-Role Architecture:

Specialized Node Roles: Flow's PoS model features a multi-node architecture where node roles
are divided among different types of specialized nodes, each responsible for specific tasks. This
separation enhances scalability by allowing nodes to focus on particular operations, leading to
efficient transaction processing and high throughput.

2. HotStuff Consensus Algorithm:

- Optimized for High Throughput and Fast Finality: Flow utilizes an optimized version of the
HotStuff consensus protocol, which is designed to support high-speed, low-latency transactions
essential for Flow's performance-oriented blockchain.

- BFT Compliance: HotStuff is a BFT protocol, allowing it to tolerate up to one-third of nodes acting
maliciously without compromising the network's security. This resilience ensures the network
remains secure and functional, even with potential faults or dishonest nodes.

3. Leader-Based Block Proposal:

- Leader and Replica Nodes: HotStuff operates with a leader-based approach where a designated
leader node proposes new blocks, and other nodes (replicas) validate these blocks. This
method simplifies the consensus process, reducing complexity and improving efficiency.
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- Leader Rotation Mechanism: To prevent centralization and enhance fault tolerance, HotStuff
incorporates a leader rotation system, replacing the leader if it becomes unresponsive or acts
maliciously. This rotation ensures continuous network reliability and minimizes downtime.

Hedera Hashgraph operates on a unique Hashgraph consensus algorithm, a directed acyclic graph
(DAG) system that diverges from traditional blockchain technology. It uses Asynchronous Byzantine
Fault Tolerance (aBFT) to secure the network.

Core Components:

1. Hashgraph Consensus and aBFT:

Hedera Hashgraph's consensus mechanism achieves aBFT, which allows the network to tolerate
malicious nodes without compromising security, ensuring high levels of fault tolerance and
stability.

2. Gossip about Gossip Protocol:

The network employs a "Gossip about Gossip" protocol, where nodes share transaction
information along with details of previous gossip events. This process allows each node to
rapidly learn the entire network state, enhancing communication efficiency and minimizing
latency.

3. Virtual Voting:

Hedera does not rely on traditional miners or stakers. Instead, it uses virtual voting, where nodes
reach consensus by analyzing the gossip history and simulating votes based on the order and
frequency of transactions received. Virtual voting eliminates the need for actual voting
messages, reducing network congestion and speeding up consensus.

4. Deterministic Finality:

Once consensus is reached, transactions achieve deterministic finality instantly, making them
irreversible and confirmed within seconds. This attribute is ideal for applications needing quick
and irreversible transaction confirmations.

5. Staking for Network Security:

Hedera incorporates staking to bolster network security. HBAR holders can stake their tokens to
support validator nodes, contributing to the network's resilience and encouraging long-term
engagement in consensus operations.

The Linea Network uses a Zero-Knowledge Rollup (ZK-Rollup) architecture with a zkEVM for
Ethereum compatibility, and its consensus is derived from Ethereum's own proof-of-stake security.
While the Network has components like a sequencer for ordering transactions and a coordinator
for network management, its consensus mechanism is fundamentally linked to the proof and
verification process of zero-knowledge proofs and the security of the Ethereum mainnet. Instead of
a typical decentralized consensus on a separate blockchain, the Network inherits its security and
state finality from Ethereum.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:
- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced

with the Doomslug protocol.
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- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.
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Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.

5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.
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- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as
the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of
Stake (PoS) as it doesn't rely on mining or staking but instead leverages trusted validators in a
Federated Byzantine Agreement (FBA) model.

Core Concepts:

1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate
transactions and propose new ledger updates. Each node maintains a list of trusted validators
known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a
node's UNL agree on the validity of a transaction or block. This ensures high levels of security and
decentralization.

2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of
the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains
transaction data, and validators ensure the validity and proper ordering of these transactions.

Consensus Process:

1. Proposal Phase: Validators propose new transactions to be added to the ledger.

2. Validation Phase: Validators vote on proposed transactions by comparing them to their UNL.
Consensus is achieved when 80% of validators agree.

3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making
them irreversible and final.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):
- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
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a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.
2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

Sonic utilizes a Proof-of-Stake (PoS) consensus mechanism integrated with a Directed Acyclic Graph
(DAG) architecture to enhance scalability and efficiency. Validators are required to stake the
network's native $S tokens, with a minimum of 500,000 $S tokens needed to operate a validator
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node. This substantial staking requirement ensures that validators have a significant investment in
the network's integrity.

Statemint is acommon-good parachainon the Polkadot and Kusama networks, designed to handle
asset management and issuance efficiently while leveraging Polkadot's shared security model.

Core Components:

- Relay Chain Integration: Statemint inherits its consensus mechanism from the Polkadot Relay
Chain, which operates on aNominated Proof of Stake (NPoS)model. This model ensures robust
security and decentralization by relying on validators and nominators.

- Shared Security: As a parachain, Statemint utilizes the Polkadot Relay Chain’s validators for block

validation, ensuring high security and interoperability without requiring independent validators.

Collator Nodes: Statemint employs collator nodes to aggregate transactions into blocks and

submit them to the Relay Chain validators for finalization. Collators do not participate in

consensus directly but play a key role in transaction processing.

- Immediate Finality: The underlying Polkadot consensus mechanism ensuresinstant finality using
the GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) protocol, which
provides secure and efficient transaction confirmation.

Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).
Core Concepts:

1. Federated Byzantine Agreement (FBA):

- SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows
decentralized, leaderless consensus without the need for a closed system of trusted
participants.

- Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it
trusts. Consensus is achieved when these slices overlap and collectively agree on the
transaction state.

2. Nodes and Validators:

- Nodes: Nodes running the Stellar software participate in the network by validating transactions
and maintaining the ledger.

- Validators: Nodes that are responsible for validating transactions and reaching consensus on
the state of the ledger. Consensus Process

3. Transaction Validation:

Transactions are submitted to the network and nodes validate them based on predetermined

rules, such as sufficient balances and valid signatures.
4. Nomination Phase:

- Nomination: Nodes nominate values (proposed transactions) that they believe should be
included in the next ledger. Nodes communicate their nominations to their quorum slices.

- Agreement on Nominations: Nodes vote on the nominated values, and through a process of
voting and federated agreement, a set of candidate values emerges. This phase continues until
nodes agree on a single value or a set of values.

5. Ballot Protocol (Voting and Acceptance): Balloting:

- The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes
through multiple rounds of voting, where nodes vote to either accept or reject the proposed
values.

- Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives
sufficient votes across overlapping slices, it moves to the next stage.

- Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare,
confirm, externalize), it is accepted and externalized as the next state of the ledger.
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6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their

copies of the ledger to reflect the new state. Security and Economic Incentives
7. Trust and Quorum Slices:

Nodes are free to choose their own quorum slices, which provides flexibility and decentralization.
The overlapping nature of quorum slices ensures that the network can reach consensus even if
some nodes are faulty or malicious.

8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energy-
intensive mining processes. This makes it environmentally friendly and suitable for high-
throughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, the network incentivizes participation
through the intrinsic value of maintaining a secure, efficient, and reliable payment network.

The Sui blockchain utilizes a Byzantine Fault Tolerant (BFT) consensus mechanism optimized for
high throughput and low latency.

Core Components:

1. Mysten Consensus Protocol:

- The Sui consensus is based on Mysten Labs' Byzantine Fault Tolerance (BFT) protocol, which
builds on principles of Practical Byzantine Fault Tolerance (pBFT) but introduces key
optimizations for performance.

- Leaderless Design: Unlike traditional BFT models, Sui does not rely on a single leader to propose
blocks. Validators can propose blocks simultaneously, increasing efficiency and reducing the
risks associated with leader failure or attacks.

- Parallel Processing: Transactions can be processed in parallel, maximizing network throughput
by utilizing multiple cores and threads. This allows for faster confirmation of transactions and
high scalability.

2. Transaction Validation:

Validators are responsible for receiving transaction requests from clients and processing them.
Fach transaction includes digital signatures and must meet the network's rules to be
considered valid. Validators can propose transactions simultaneously, unlike many other
networks that require a sequential, leader-driven process.

3. Optimistic Execution:

Optimistic Consensus: Sui allows validators to process certain non-contentious, independent
transactions without waiting for full consensus. This is known as optimistic execution and helps
reduce transaction latency for many use cases, allowing for fast finality in most cases.

4. Finality and Latency:

The system only requires three rounds of communication between validators to finalize a
transaction. This results in low-latency consensus and rapid transaction confirmation times,
achieving scalability while maintaining security.

5.Fault Tolerance:

The system can tolerate up to one-third of validators being faulty or malicious without

compromising the integrity of the consensus process.

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism,
designed to improve scalability, transaction speed, and energy efficiency.
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Core Components:

1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of
delegates known as Super Representatives (SRs)who are responsible for validating transactions
and producing new blocks on the network. Token holders can vote for SRs based on their stake in
the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected
to participate in the block production process. SRs take turns producing blocks, which are added
to the blockchain. This is done on a rotational basis to ensure decentralization and prevent
control by a small group of validators.

2. Block Production: The Super Representatives generate new blocks and confirm transactions. The
Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds,
making it highly efficient and capable of processing thousands of transactions per second.

3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important
network decisions, such as protocol upgrades and changes to the system’s parameters. Voting
power is proportional to the amount of TRX (Tron’s native token) that a user holds and chooses to
stake. This provides a governance system where the community can actively participate in
decision-making.

4. Super Representatives: The Super Representatives play a crucial role in maintaining the security
and stability of the Tron blockchain. They are responsible for validating transactions, proposing
new blocks, and ensuring the overall functionality of the network. Super Representatives are
incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

zkSync operates as a Layer 2 scaling solution for Ethereum, leveraging zero-knowledge rollups (ZK-
Rollups) to enable fast, cost-effective, and secure transactions. This consensus mechanism allows
zkSync to offload transaction computation from Ethereum's Layer 1, ensuring scalability while
maintaining Ethereum's base-layer security.

Core Components:

- Zero-Knowledge Rollups (ZK-Rollups):
zkSync aggregates multiple transactions off-chain and processes them in batches. A cryptographic
proof, called a validity proof, is generated for each batch and submitted to the Ethereum
mainnet. This ensures that all transactions are valid and compliant with Ethereum's rules
without processing them individually on Layer 1.
- Validity Proofs:
zkSync uses zk-SNARKs (Succinct Non-Interactive Arguments of Knowledge) for its validity proofs.
These proofs provide mathematical guarantees that transactions within a batch are valid,
eliminating the need for Ethereum nodes to re-execute off-chain transactions.
- Sequencers:
Transactions on zkSync are ordered and processed by sequencers, which bundle transactions
into batches. Sequencers maintain network efficiency and provide fast confirmations.
- Fraud Resistance:
Unlike Optimistic Rollups, zkSync relies on validity proofs rather than fraud proofs, meaning that
transactions are final and secure as soon as the validity proof is accepted by Ethereum.
- Data Availability:
All transaction data is stored on-chain, ensuring that the network remains decentralized and
users can reconstruct the state of zkSync at any time.

S.5 Incentive Mechanisms and Applicable Fees

USDC is present on the following networks: Algorand, Aptos Coin, Arbitrum, Avalanche, Base, Celo,
Ethereum, Flow, Hedera Hbar, Linea, Near Protocol, Optimism, Polygon, Ripple, Solana, Sonic,
Statemint, Stellar, Sui, Tron, Zksync.
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Algorand's consensus mechanism, Pure Proof-of-Stake (PPoS), relies on the participation of token
holders (stakers) to ensure the network's security and integrity:

1. Participation Rewards:

- Staking Rewards: Users who participate in the consensus protocol by staking their ALGO tokens
earn rewards. These rewards are distributed periodically and are proportional to the amount of
ALGO staked. This incentivizes users to hold and stake their tokens, contributing to network
security and stability.

- Node Participation Rewards: Validators, also known as participation nodes, are responsible for
proposing and voting on blocks. These nodes receive additional rewards for their active role in
maintaining the network.

2. Transaction Fees:

- Flat Fee Model: Algorand employs a flat fee model for transactions, which ensures predictability
and simplicity. The standard transaction fee on Algorand is very low (around 0.001 ALGO per
transaction). These fees are paid by users to have their transactions processed and included in
a block.

- Fee Redistribution: Collected transaction fees are redistributed to participants in the network.
This includes stakers and validators, further incentivizing their participation and ensuring
continuous network operation.

3. Economic Security:

Token Locking: To participate in the consensus mechanism, users must lock up their ALGO
tokens. This economic stake acts as a security deposit that can be slashed (forfeited) if the
participant acts maliciously. The potential loss of staked tokens discourages dishonest behavior
and helps maintain network integrity.

Fees on the Algorand Blockchain

1. Transaction Fees:

Algorand uses a flat transaction fee model. The current standard fee is 0.001 ALGO per
transaction. This fee is minimal compared to other blockchain networks, ensuring affordability
and accessibility.

2. Smart Contract Execution Fees:

Fees for executing smart contracts on Algorand are also designed to be low. These fees are based
on the computational resources required to execute the contract, ensuring that users are only
charged for the actual resources they consume.

3. Asset Creation Fees:

Creating new assets (tokens) on the Algorand blockchain involves a small fee. This fee is necessary
to prevent spam and ensure that only genuine assets are created and maintained on the
network.

Incentive Mechanism:

- Validator Rewards: Validators earn rewards in APT tokens for validating transactions and producing
blocks. Rewards are distributed proportionally based on the stake of validators and their
delegators.

- Delegator Participation: APT token holders can delegate their tokens to validators, earning a share
of the staking rewards without running their own nodes.

- Slashing Mechanism: Validators face penalties, such as losing staked tokens, for malicious actions
or prolonged inactivity, ensuring accountability and network security.
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Applicable Fees:

- Transaction Fees: Users pay transaction fees in APT tokens for sending transactions and
interacting with smart contracts.

- Dynamic Fee Adjustment: Fees are dynamically adjusted based on network activity and resource
usage, ensuring cost efficiency and preventing congestion.

- Fee Distribution: Transaction fees are distributed among validators and delegators, providing an
additional incentive for network participation.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.
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1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on
which it was developed. Transaction on base are bundled by a, so called, sequencer and the result
is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined
into a single L1 transaction. This lowers the average transaction cost per transaction, because many
L2 transactions together fund the transaction cost for the single L1 transaction. This creates
incentives to use base rather than the L1, i.e. Ethereum, itself.
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To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is
no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be
withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal
request on L1. If this request remains unchallenged for a period of time the funds can be
withdrawn. During this time period any other user can submit a fault proof, which will start a dispute
resolution process. This process is designed with economic incentives for correct behaviour.

Celo’s incentive model rewards validators and prioritizes accessibility with minimal transaction fees,
especially for cross-border payments, supporting a flexible and user-friendly ecosystem.

Incentive Mechanisms:

1. Validator Rewards:

Transaction Fees and Newly Minted Tokens: Validators earn rewards from transaction fees as well
as newly minted CELO tokens. This dual-source reward system provides a continuous financial
incentive for validators to act honestly and secure the network.

2. Transaction Flexibility and Gas Price:

- Gas Limit and Price Control: Each transaction specifies a maximum gas limit, ensuring that users
are not excessively charged if a transaction fails. Users can also set a gas price to prioritize
transactions, allowing faster processing for higher fees.

- Payment Flexibility with Multiple Currencies: Unlike many blockchains, Celo allows transaction
fees to be paid in various ERC-20 tokens, providing flexibility for users. This approach improves
accessibility, especially for individuals with limited access to traditional banking.

3. Minimal Fee Structure for Accessibility:

- Designed for Low-Cost Transactions: Celo's fee structure is intentionally minimal, particularly for
cross-border payments, making it ideal for users who may not have traditional banking options.
This focus on accessibility aligns with Celo's mission to bring blockchain technology to
underserved communities.

Applicable Fees:

Transaction Fees: Fees are calculated based on gas usage, with a maximum gas limit set per
transaction. This limit protects users from excessive costs, while the option to pay in multiple
currencies enhances flexibility.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Flow's incentive model rewards validator nodes, supports ecosystem growth, and maintains
affordable fees for developers and users.
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Incentive Mechanisms:

1. Staking Rewards for Specialized Nodes:

Role-Based Rewards: Validators earn Flow tokens according to their specific roles and
contributions within the multi-node architecture, aligning rewards with each node’s
responsibilities to encourage balanced and effective network participation.

2. Transaction Fees:

Stable and Consumer-Friendly Fees: Flow's fee structure is designed for predictability, keeping
transaction costs stable for both developers and users. Fees are based on transaction
complexity and provide an ongoing income stream for validators.

3. Misbehavior Penalties:

Penalties for Downtime or Malicious Behavior: To maintain network stability, Flow imposes
penalties on validators for misbehavior or downtime. This incentivizes high-quality validator
participation and ensures consistent performance.

4. Ecosystem and Developer Support:

Dedicated Portion of Fees and Rewards: A portion of Flow's transaction fees and rewards is
allocated to developer initiatives, ecosystem growth, and community engagement. This
investment fosters innovation, supports long-term network health, and aligns incentives for
ecosystem development.

Hedera Hashgraph incentivizes network participation through transaction fees and staking rewards,
with a structured and predictable fee model designed for enterprise use.

Incentive Mechanisms:

1. Staking Rewards for Nodes:

- HBAR Rewards for Node Operators: Node operators earn HBAR rewards for providing network
security and processing transactions, incentivizing them to act honestly and support network
stability.

- User Staking: HBAR holders can stake their tokens to support nodes. Staking rewards offer an
additional incentive for token holders to engage in network operations, although the structure
may evolve with network growth.

2. Service-Based Node Rewards:
Nodes receive rewards based on specific services they provide to the network, such as:
- Consensus Services: Reaching consensus and maintaining transaction order.
- File Storage: Storing data on the Hedera network.
- Smart Contract Processing: Supporting contract executions for decentralized applications.

Applicable Fees:

1. Predictable Transaction Fees: Hedera's fee structure is fixed and predictable, ensuring
transparent costs for users and appealing to enterprise-grade applications. Transaction fees are
paid in HBAR and are designed to be stable, making it easier for businesses to plan for usage
costs.

2. Fee Allocation: All transaction fees collected in HBAR are distributed to network nodes as
rewards, reinforcing their role in maintaining network integrity and processing transactions
efficiently.

Like Ethereum, the Network uses a gas system, where gas is the unit of computational effort
required to process a transaction. All gas fees on the Network are paid in Ether (ETH). The Network
has a base fee that is designed to stabilize at 7 wei. The base fee still decreases or increases based
on network traffic, similar to Ethereum, but it does not go below 7 wei. The Network does not
require token staking for transaction validation purposes and thus provides no staking rewards. It
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does not offer incentives for running a full network node. It does charge fees collected by the
sequencer for transaction processing. Those fees are paid in ETH, 20% of which are immediately
burned while the remaining 80% are converted to Tokens and then burned.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.
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Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.
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- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of
Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm
(RPCA).

Incentive Mechanisms to Secure Transactions:

1. Validators: Validators on the Ripple network are not directly compensated with rewards like in
PoW/PoS models. Instead, they are incentivized by the utility and stability of the network,
particularly financial institutions that benefit from Ripple's efficiency in cross-border payments.

2. No Mining: Since Ripple does not use mining, it eliminates the need for energy-intensive
computations, contributing to fast transaction speeds and scalability.

Sustainability indicators according to MiCAR 66 (5) 58



Fees on the Ripple XRP Blockchain:

1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as
\drops") for each transaction. The purpose of these fees is to prevent network spam and
overload.

2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed
from circulation. This reduces the overall supply of XRP over time, contributing to potential long-
term value stability.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.
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Sonic's economic model is designed to incentivize active participation from both validators and
developers. Validators earn rewards through a combination of block rewards and transaction fees.
The block reward system employs a dynamic Annual Percentage Rate (APR) mechanism.

Statemint is a common-good parachain on the Polkadot and Kusama networks, designed to enable
efficient asset management while benefiting from Polkadot's shared security and governance
model.

Incentive Mechanisms:

- Relay Chain Validators: Validators securing the Polkadot Relay Chain are indirectly incentivized
through block rewards and transaction fees collected across all parachains, including Statemint.
This ensures the stability and security of the network without requiring Statemint-specific
rewards.

- Collator Compensation: Collator nodes aggregate transactions and produce blocks for Statemint.
They may be compensated through external arrangements, such as subsidies or user-driven
incentives, depending on governance decisions and usage patterns.

- Governance Participation: Polkadot (DOT) and Kusama (KSM) token holders influence Statemint's
operations, such as fee adjustments and protocol upgrades, through on-chain governance
mechanisms.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the native tokens of the Relay Chain, DOTfor
Polkadot or KSMfor Kusama. These fees are distributed to Relay Chain validators to support the
network's maintenance.

- Asset Creation and Transfer Fees: Fees apply for creating new assets and transferring them on the
Statemint chain. These fees help prevent spam and ensure efficient use of network resources.

- Governance-Defined Fee Adjustments: The Statemint parachain's fees can be adjusted through
governance proposals, enabling the community to adapt costs to network conditions.

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve
decentralized and secure transaction validation through a federated Byzantine agreement (FBA)
model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, it ensures network security and transaction
validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

1. Quorum Slices and Trust:

- Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum
slice. Consensus is achieved through the intersection of these slices, creating a robust and
decentralized trust network.

- Federated Voting: Nodes communicate their votes within their quorum slices, and through
multiple rounds of federated voting, they agree on the transaction state. This process ensures
that even if some nodes are compromised, the network can still achieve consensus securely.

2. Intrinsic Value and Participation:

- Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment
network incentivizes nodes to act honestly and maintain network security. Organizations and
individuals running nodes benefit from the network's functionality and the ability to facilitate
transactions.

- Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes
decentralization, reducing the risk of central points of failure and making the network more
resilient to attacks. Fees on the Stellar Blockchain
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3. Transaction Fees:

- Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM
(known as a base fee). This low and predictable fee structure makes Stellar suitable for
micropayments and high-volume transactions.

- Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a
small fee for each transaction, Stellar ensures that the network remains efficient and that
resources are not wasted on processing malicious or frivolous transactions.

4. Operational Costs:

Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the
operational costs of running the network. This ensures that the network can sustain itself
without placing a significant financial burden on users.

5. Reserve Requirements:

- Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM
is required. This reserve requirement prevents the creation of an excessive number of
accounts, further protecting the network from spam and ensuring efficient resource usage.

- Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and
offers on the Stellar decentralized exchange (DEX). These reserves help maintain network
integrity and prevent abuse.

Security and Economic Incentives:

1. Validators:

Validators stake SUI tokens to participate in the consensus process. They earn rewards for

validating transactions and securing the network.
2. Slashing:

Validators can be penalized (slashed) for malicious behavior, such as double-signing or failing to
properly validate transactions. This helps maintain network security and incentivizes honest
behavior.

3. Delegation:

Token holders can delegate their SUI tokens to trusted validators. In return, they share in the
rewards earned by validators. This encourages widespread participation in securing the
network.

Fees on the SUI Blockchain:

1. Transaction Fees:

Users pay transaction fees to validators for processing and confirming transactions. These fees
are calculated based on the computational resources required to process the transaction. Fees
are paid in SUI tokens, which is the native cryptocurrency of the Sui blockchain.

2. Dynamic Fee Model:

The transaction fees on Sui are dynamic, meaning they adjust based on network demand and the

complexity of the transactions being processed.

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its
network and incentivize participation.

Incentive Mechanism:

1. Super Representatives (SRs) Rewards:
- Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for
producing blocks. Each block they produce comes with a block reward in the form of TRX
tokens.
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- Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating
transactions and including them in blocks. This ensures they are incentivized to process
transactions efficiently.

2. Voting and Delegation:

- TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When
TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in
the form of newly minted TRX tokens.

- Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of
the rewards. This means delegators share in the block rewards and transaction fees that the SR
earns.

- Incentivizing Participation: The more tokens a user stakes, the more voting power they have,
which encourages participation in governance and network security.

3. Incentive for SRs:

SRs are also incentivized to maintain the health and performance of the network. Their reputation
and continued election depend on their ability to produce blocks consistently and efficiently
process transactions.

Applicable Fees:

1. Transaction Fees:

- Fee Calculation: Users must pay transaction fees to have their transactions processed. The
transaction fee varies based on the complexity of the transaction and the network's current
demand. This is paid in TRX tokens. Transaction

- Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an
ongoing income to maintain and support the network.

2. Storage Fees:

Tron charges storage fees for data storage on the blockchain. This includes storing smart
contracts, tokens, and other data on the network. Users are required to pay these fees in TRX
tokens to store data.

3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth

and energy through staking. Users who stake their TRX tokens receive \energy

zkSync incentivizes network participants through a streamlined fee structure and role-based
rewards, designed to ensure security, scalability, and usability for both users and validators.

Incentive Mechanism:

- Validator Rewards: Validators, who generate validity proofs and secure the network, are
compensated through transaction fees paid by users. Their role ensures that batches of
transactions are processed efficiently and accurately.

- Sequencer Incentives: Sequencers are responsible for bundling and ordering transactions off-
chain. They earn a share of the transaction fees for maintaining network performance and fast
processing times.

- Ecosystem Growth Rewards: zkSync allocates resources to incentivize developers and projects
building on its platform, fostering a robust ecosystem of dApps, DeFi protocols, and NFT
marketplaces.

Applicable Fees:

- Transaction Fees: Users pay fees in Ether (ETH) for transactions on zkSync. These fees are
significantly lower than Ethereum Layer 1 fees, as zkSync processes transactions off-chain and
submits only aggregated proofs to the Ethereum mainnet.
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- Fee Model: Fees are dynamically calculated based on the complexity of transactions (e.g., token
transfers, smart contract interactions) and the cost of submitting validity proofs to Ethereum.

- Scalability Benefits: zkSync's efficient rollup architecture reduces gas fees for users while ensuring
that validators and sequencers are appropriately compensated for their roles.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
algorand, aptos_coin, arbitrum, avalanche, base, celo, ethereum, flow, hedera_hbar, linea,
near_protocol, optimism, polygon, ripple, solana, sonic, statemint, stellar, sui, tron, zksync is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Sustainability indicators according to MiCAR 66 (5) 63



Kusama

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Kusama /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 474616.80000 kWha/

Qualitative information

S.4 Consensus Mechanism

Kusama is a scalable, interoperable blockchain platform built using a Nominated Proof of Stake
(NPoS) consensus mechanism. It is a canary network for Polkadot, allowing developers to
experiment and deploy new features before they are added to Polkadot. Kusama's NPoS
mechanism ensures high security, decentralized control, and rapid block finality.

Key Features of Kusama’s Consensus Mechanism:

1. Nominated Proof of Stake (NPoS):

- Validators and Nominators: Kusama's consensus mechanism relies on validators and
nominators. Validators are responsible for producing blocks and validating transactions, while
nominators select trustworthy validators by staking KSM (Kusama'’s native token).

- Staking and Security: Validators must stake KSM tokens to participate in consensus, and
nominators back validators with their KSM tokens. The more KSM tokens staked by both

validators and nominators, the more secure the network is.

- Validator Rotation: Validators are selected based on the amount of KSM staked, with a fixed
number of validators chosen to participate in consensus at any given time. The network
periodically rotates validators to ensure fairness and prevent centralization.

- Finality and Security: NPoS ensures secure and fast finality. Once a block is validated, it becomes
part of the immutable blockchain, meaning it cannot be reverted or reorganized.

2. Governance:

- On-Chain Governance: Kusama features a robust on-chain governance system that allows KSM
holders to vote on important protocol decisions, including changes to the consensus
mechanism, network upgrades, and other governance parameters.

- Democratic Decision-Making: All token holders have voting power proportional to the amount of
KSM they hold and are willing to lock up. This ensures decentralized control over network

upgrades and parameters.

- Governance Proposals: Kusama's governance is open and transparent, with proposals

submitted by the community, allowing participants to shape the direction of the network.
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3. Parachain Auctions:

- Shared Security: Kusama supports parachains, which are individual blockchains that benefit
from Kusama's shared security model. Parachain slots are won through auctions where
participants bid with KSM tokens, ensuring that only the most committed participants secure a
parachain slot.

- Scalability: This multi-chain model enables Kusama to scale horizontally, allowing for the
connection of numerous independent blockchains, which can interoperate within the Kusama
ecosystem.

4. Fast Finality and High Throughput:

- Speed: Kusama’'s consensus mechanism allows for rapid block finality and high throughput,
supporting thousands of transactions per second.

- Low Latency: The system’s low-latency design ensures quick confirmation times, enabling
Kusama to handle high transaction volumes efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Kusama's incentive mechanisms ensure active participation in securing and maintaining the network
while its fee structure supports efficient operation and scalability of the ecosystem.

Incentive Mechanism:

1. Validator Rewards:

- Block Rewards: Validators in Kusama earn rewards for successfully producing blocks and
validating transactions. These rewards are given in KSM tokens and are distributed
proportionally to the amount of KSM staked by validators and nominators.

- Transaction Fees: In addition to block rewards, validators also earn transaction fees for validating
and including transactions in blocks. These fees are paid by users who want their transactions
included in the next block.

2. Nominator Rewards:

- Staking Rewards: Nominators, who delegate their KSM tokens to trusted validators, share in the
rewards earned by the validators they support. Nominators receive a proportion of both the
block rewards and transaction fees, incentivizing them to choose high-performing validators.

- Reward Distribution: The rewards earned by nominators are distributed based on the amount of
KSM they have staked with a validator. More KSM staked means higher rewards for the
nominator.

3. Parachain Auction Participation:

- Slot Auctions: Kusama's parachain slots are won through an auction process, where participants
bid using KSM tokens. This incentivizes KSM holders to lock up their tokens in parachain
auctions to secure valuable parachain slots for their projects.

- Crowdloan Incentives: Projects bidding for parachain slots can incentivize users to participate in
crowdloans, where users lend their KSM tokens to the project in exchange for potential
rewards once the project secures a parachain slot.

4. Governance Participation:

Voting Rewards: KSM token holders who participate in governance decisions, such as voting on
proposals and upgrades, are incentivized with the ability to influence the future of the network.
Although there are no direct financial rewards for voting, active participation in governance
ensures the sustainability and growth of the ecosystem.

Applicable Fees:

1. Transaction Fees:
- Fee Structure: Kusama users pay transaction fees for processing their transactions on the
network. These fees are generally low and are determined by the transaction's size and
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network demand. Transaction fees are paid in KSM tokens and are used to compensate
validators for their work.

- Dynamic Fee Adjustment: The fee rate can adjust based on the current network congestion.
During periods of high demand, transaction fees can increase, prioritizing faster processing of
transactions with higher fees.

2. Parachain Slot Auction Fees:

Bidding Fees: Projects wishing to secure a parachain slot must participate in an auction and bid
KSM tokens to win the slot. The auction fees paid to win a parachain slot are burned or
redistributed within the Kusama ecosystem to support network growth and maintenance.

3. Storage Fees:

Data Storage: Kusama charges fees for storing data on the network, including smart contracts and
parachain data. These fees are required to ensure efficient data usage and prevent
unnecessary resource consumption. Fees for storage are also paid in KSM tokens.

4. Governance Fees:

Proposal and Voting Costs: Participants in governance, such as those submitting proposals or
voting on network upgrades, may be required to pay minimal fees, ensuring the governance
process is secure and spam-free. These costs help prevent abuse of the voting system and are
intended to maintain an orderly governance environment.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ripple XRP D

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /

S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /

S.3 Name of the crypto-asset Ripple XRP /

S.6 Beginning of the period to which the disclosure 2024-10-22 /

relates

S.7 End of the period to which the disclosure relates 2025-10-22 /

S.8 Energy consumption 299638.07334
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Field Value| Unit
kWh/

Qualitative information

S.4 Consensus Mechanism
Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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Klaytn employs a modified Istanbul Byzantine Fault Tolerance (IBFT) consensus algorithm, a variant
of Proof of Authority (PoA), enabling high performance and immediate transaction finality.

Core Components of Klaytn's Consensus:

1. Modified IBFT Algorithm:

Immediate Transaction Finality: Klaytn's IBFT algorithm ensures that once a block is validated, it is
immediately final and cannot be reversed. This guarantees that transactions are quickly settled,
providing a secure and efficient user experience.

2. Klaytn Governance Council:

- Council-Driven Governance: The Klaytn network is governed by the Klaytn Governance Council, a
consortium of global organizations responsible for selecting and maintaining Consensus Nodes
(CNs). This council-based governance model balances decentralization with performance and
ensures transparency in decision-making.

- Two-Thirds Majority for Finalization: For a block to be finalized, it must receive signatures from
more than two-thirds of the council members, ensuring broad consensus and network security.

3. Three-Tiered Node Architecture:

- Consensus Nodes (CNs): The selected validators responsible for producing and validating blocks.
CNs are at the core of the network’s security and stability.

- Proxy Nodes (PNs): Act as intermediaries, relaying data between CNs and the broader network,
which helps distribute network traffic and improve accessibility.

- Endpoint Nodes (ENs): Interface directly with end-users, facilitating transactions, executing smart
contracts, and serving as user access points to the Klaytn network.

The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as
the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of
Stake (PoS) as it doesn't rely on mining or staking but instead leverages trusted validators in a
Federated Byzantine Agreement (FBA) model.

Core Concepts:

1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate
transactions and propose new ledger updates. Each node maintains a list of trusted validators
known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a
node's UNL agree on the validity of a transaction or block. This ensures high levels of security and
decentralization.

2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of
the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains
transaction data, and validators ensure the validity and proper ordering of these transactions.

Consensus Process:

1. Proposal Phase: Validators propose new transactions to be added to the ledger.

2. Validation Phase: Validators vote on proposed transactions by comparing them to their UNL.
Consensus is achieved when 80% of validators agree.

3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making
them irreversible and final.

S.5 Incentive Mechanisms and Applicable Fees
Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.
Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to

ensure network security and incentivize participation from validators and delegators.
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Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Klaytn's incentive structure includes block rewards and transaction fees distributed to Consensus
Nodes (CNs) and various network funds, fostering network security, sustainability, and community
development.
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Incentive Mechanisms:

1. Rewards for Consensus Nodes (CNs):

- Fixed Block Rewards: CNs earn fixed rewards in KLAY tokens for validating and producing blocks.
This predictable income incentivizes CNs to maintain active participation and secure the
network.

- Transaction Fees: Users pay transaction fees in KLAY tokens, which are collected by the network
and distributed among the CNs as additional rewards, further supporting network security and
stability.

2. Block Reward Distribution: Governance Council (GC) Reward:

- GC Block Proposer Reward: 10% of the block reward goes to the specific CN that proposed the
block, incentivizing continuous active participation.

- GC Staking Award: 40% of the block reward is distributed among all Governance Council
members who stake KLAY, promoting network security by rewarding staked tokens.

- Klaytn Community Fund (KCF): 30% of each block reward is allocated to the KCF to support
community development, dApp creation, and overall ecosystem growth.

- Klaytn Foundation Fund (KFF): 20% of the block reward goes to the KFF, providing resources for
long-term network sustainability and future development initiatives.

3. Transaction Fees:

- User Fees for Network Interaction: Users pay fees in KLAY based on gas usage and gas price for
transactions. These fees are then distributed to CNs, incentivizing efficient transaction
processing and active participation.

Applicable Fees:

Transaction Fees: Transaction fees on Klaytn are paid in KLAY and calculated based on gas
consumption. These fees support network maintenance by compensating validators and fostering
economic sustainability.

The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of
Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm
(RPCA).

Incentive Mechanisms to Secure Transactions:

1. Validators: Validators on the Ripple network are not directly compensated with rewards like in
PoW/PoS models. Instead, they are incentivized by the utility and stability of the network,
particularly financial institutions that benefit from Ripple's efficiency in cross-border payments.

2. No Mining: Since Ripple does not use mining, it eliminates the need for energy-intensive
computations, contributing to fast transaction speeds and scalability.

Fees on the Ripple XRP Blockchain:

1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as
\drops") for each transaction. The purpose of these fees is to prevent network spam and
overload.

2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed
from circulation. This reduces the overall supply of XRP over time, contributing to potential long-
term value stability.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:
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For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, klaytn is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Tezos

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Tezos /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 282247.35670 kWha/

Qualitative information

S.4 Consensus Mechanism
Tezos is present on the following networks: Binance Smart Chain, Tezos.
Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority

(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
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This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Tezos operates on a Liquid Proof of Stake (LPoS) consensus mechanism, which combines flexibility
in staking participation with an on-chain governance model.

Core Components:

Liquid Proof of Stake (LPoS) Tezos allows token holders to participate in staking by either directly
staking their tokens or delegating them to a validator (known as a baker) without transferring
ownership. Validators (bakers) are responsible for creating new blocks (baking) and endorsing
other blocks for validation. Bakers and Endorsers Bakers are selected based on the amount of
XTZ (Tezos tokens) staked or delegated to them. The more XTZ staked, the higher the probability
of being chosen to bake or endorse blocks. Endorsers are randomly selected from a pool of
bakers to validate and approve blocks baked by other bakers. This additional validation enhances
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network security. Self-Amendment and Governance Tezos's unique governance model allows
token holders to propose, vote on, and implement network upgrades without requiring hard
forks. This self-amendment protocol enables Tezos to evolve based on community and developer
input, making it highly adaptable and flexible.

S.5 Incentive Mechanisms and Applicable Fees
Tezos is present on the following networks: Binance Smart Chain, Tezos.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.
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3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Tezos incentivizes network participation and security through baking rewards, transaction fees, and
an inflationary reward model.

Incentive Mechanisms:

Rewards for Baking and Endorsing Bakers receive XTZ rewards for baking new blocks. Endorsers,
who validate and approve blocks baked by others, are also rewarded in XTZ. These rewards
encourage active participation and help secure the network. Delegation Incentives XTZ holders
who do not wish to bake can delegate their tokens to a baker, earning a share of the baker's
rewards without directly participating. This delegation option broadens participation, making it
accessible to more users, thereby enhancing overall network security. Security Deposit
Requirement Bakers are required to post a bond (security deposit) in XTZ to bake blocks, which is
held as collateral to prevent dishonest actions. If a baker acts maliciously, they risk forfeiting this
bond, creating a disincentive for bad behavior and aligning bakers’ interests with network
integrity.

Applicable Fees:

Transaction Fees Users pay transaction fees in XTZ for activities such as transferring funds and
interacting with smart contracts. These fees are awarded to bakers and endorsers, providing
them with an additional incentive to validate and secure the network. Inflationary Reward Model
Tezos has an inflationary reward system, where new XTZ tokens are periodically created and
distributed as rewards to bakers and endorsers. This model encourages continuous participation
but gradually increases the XTZ supply, balancing network security and token availability over
time.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
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To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

The following sources where used: tzStats

Polygon POL @

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Polygon POL /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 91126.51977 kWha/

Qualitative information

S.4 Consensus Mechanism
Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:
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Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.
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S.5 Incentive Mechanisms and Applicable Fees
Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.
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- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In order to calculate the structure adequately, a proportion of the energy consumption of the
connected network, ethereum, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Hedera HBAR (H)
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Quantitative information

Field Value| Unit
AMINA (Austria)

>1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Hedera HBAR /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 82133.21250 kWha/

Qualitative information

S.4 Consensus Mechanism

Hedera Hashgraph operates on a unique Hashgraph consensus algorithm, a directed acyclic graph
(DAG) system that diverges from traditional blockchain technology. It uses Asynchronous Byzantine
Fault Tolerance (aBFT) to secure the network.

Core Components:

1. Hashgraph Consensus and aBFT:

Hedera Hashgraph's consensus mechanism achieves aBFT, which allows the network to tolerate
malicious nodes without compromising security, ensuring high levels of fault tolerance and
stability.

2. Gossip about Gossip Protocol:

The network employs a "Gossip about Gossip" protocol, where nodes share transaction
information along with details of previous gossip events. This process allows each node to
rapidly learn the entire network state, enhancing communication efficiency and minimizing
latency.

3. Virtual Voting:

Hedera does not rely on traditional miners or stakers. Instead, it uses virtual voting, where nodes
reach consensus by analyzing the gossip history and simulating votes based on the order and
frequency of transactions received. Virtual voting eliminates the need for actual voting
messages, reducing network congestion and speeding up consensus.

4. Deterministic Finality:

Once consensus is reached, transactions achieve deterministic finality instantly, making them
irreversible and confirmed within seconds. This attribute is ideal for applications needing quick
and irreversible transaction confirmations.

5. Staking for Network Security:

Hedera incorporates staking to bolster network security. HBAR holders can stake their tokens to
support validator nodes, contributing to the network's resilience and encouraging long-term
engagement in consensus operations.

S.5 Incentive Mechanisms and Applicable Fees

Hedera Hashgraph incentivizes network participation through transaction fees and staking rewards,
with a structured and predictable fee model designed for enterprise use.
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Incentive Mechanisms:

1. Staking Rewards for Nodes:

- HBAR Rewards for Node Operators: Node operators earn HBAR rewards for providing network
security and processing transactions, incentivizing them to act honestly and support network
stability.

- User Staking: HBAR holders can stake their tokens to support nodes. Staking rewards offer an
additional incentive for token holders to engage in network operations, although the structure
may evolve with network growth.

2. Service-Based Node Rewards:
Nodes receive rewards based on specific services they provide to the network, such as:
- Consensus Services: Reaching consensus and maintaining transaction order.
- File Storage: Storing data on the Hedera network.
- Smart Contract Processing: Supporting contract executions for decentralized applications.

Applicable Fees:

1. Predictable Transaction Fees: Hedera's fee structure is fixed and predictable, ensuring
transparent costs for users and appealing to enterprise-grade applications. Transaction fees are
paid in HBAR and are designed to be stable, making it easier for businesses to plan for usage
COsts.

2. Fee Allocation: All transaction fees collected in HBAR are distributed to network nodes as
rewards, reinforcing their role in maintaining network integrity and processing transactions
efficiently.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
hedera_hbar is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
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precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Stellar Lumen @

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Stellar Lumen /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 52560.00000 kWha/

Qualitative information

S.4 Consensus Mechanism
Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).
Core Concepts:

1. Federated Byzantine Agreement (FBA):

- SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows
decentralized, leaderless consensus without the need for a closed system of trusted
participants.

- Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it
trusts. Consensus is achieved when these slices overlap and collectively agree on the
transaction state.

2. Nodes and Validators:

- Nodes: Nodes running the Stellar software participate in the network by validating transactions
and maintaining the ledger.

- Validators: Nodes that are responsible for validating transactions and reaching consensus on
the state of the ledger. Consensus Process

3. Transaction Validation:

Transactions are submitted to the network and nodes validate them based on predetermined

rules, such as sufficient balances and valid signatures.
4. Nomination Phase:

- Nomination: Nodes nominate values (proposed transactions) that they believe should be
included in the next ledger. Nodes communicate their nominations to their quorum slices.

- Agreement on Nominations: Nodes vote on the nominated values, and through a process of
voting and federated agreement, a set of candidate values emerges. This phase continues until
nodes agree on a single value or a set of values.
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5. Ballot Protocol (Voting and Acceptance): Balloting:

- The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes
through multiple rounds of voting, where nodes vote to either accept or reject the proposed
values.

- Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives
sufficient votes across overlapping slices, it moves to the next stage.

- Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare,
confirm, externalize), it is accepted and externalized as the next state of the ledger.

6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their

copies of the ledger to reflect the new state. Security and Economic Incentives
7. Trust and Quorum Slices:

Nodes are free to choose their own quorum slices, which provides flexibility and decentralization.
The overlapping nature of quorum slices ensures that the network can reach consensus even if
some nodes are faulty or malicious.

8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energy-
intensive mining processes. This makes it environmentally friendly and suitable for high-
throughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, the network incentivizes participation
through the intrinsic value of maintaining a secure, efficient, and reliable payment network.

S.5 Incentive Mechanisms and Applicable Fees

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve
decentralized and secure transaction validation through a federated Byzantine agreement (FBA)
model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, it ensures network security and transaction
validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

1. Quorum Slices and Trust:

- Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum
slice. Consensus is achieved through the intersection of these slices, creating a robust and
decentralized trust network.

- Federated Voting: Nodes communicate their votes within their quorum slices, and through
multiple rounds of federated voting, they agree on the transaction state. This process ensures
that even if some nodes are compromised, the network can still achieve consensus securely.

2. Intrinsic Value and Participation:

- Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment
network incentivizes nodes to act honestly and maintain network security. Organizations and
individuals running nodes benefit from the network’s functionality and the ability to facilitate
transactions.

- Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes
decentralization, reducing the risk of central points of failure and making the network more
resilient to attacks. Fees on the Stellar Blockchain
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3. Transaction Fees:

- Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM
(known as a base fee). This low and predictable fee structure makes Stellar suitable for
micropayments and high-volume transactions.

- Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a
small fee for each transaction, Stellar ensures that the network remains efficient and that
resources are not wasted on processing malicious or frivolous transactions.

4. Operational Costs:

Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the
operational costs of running the network. This ensures that the network can sustain itself
without placing a significant financial burden on users.

5. Reserve Requirements:

- Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM
is required. This reserve requirement prevents the creation of an excessive number of
accounts, further protecting the network from spam and ensuring efficient resource usage.

- Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and
offers on the Stellar decentralized exchange (DEX). These reserves help maintain network
integrity and prevent abuse.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ChainLink Token @

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /

S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /

S.3 Name of the crypto-asset ChainLink Token /

S.6 Beginning of the period to which the disclosure 2024-10-22 /

relates

S.7 End of the period to which the disclosure relates 2025-10-22 /

S.8 Energy consumption 10269.06689
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Field Value| Unit
kWh/

Qualitative information

S.4 Consensus Mechanism

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.

- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.

- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
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2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
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and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
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Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.

5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:
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Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.
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Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator’s stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.
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- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.
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Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.
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Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.

Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
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validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, avalanche, binance_smart_chain, ethereum, fantom, gnosis_chain, optimism, polygon,
solana is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
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Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Aave Token

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Aave Token /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 4043.20837 kWha/

Qualitative information

S.4 Consensus Mechanhism

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
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3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.

- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Key Features of HECO's Consensus Mechanism:

1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the
network.

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain.

3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid
confirmation of transactions.

4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.
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Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.
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Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):
- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.
2. Proof of Stake (PoS):
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.
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- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.
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1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.
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Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add
blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing
validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the
HECO network. These fees compensate validators for processing and validating transactions.
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2. Smart Contract Execution Fees:
Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, huobi, near_protocol, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
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Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse

impacts.

Synthetix Network

Quantitative information

U

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Synthetix Network /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 3847.62654 kWha/

Qualitative information

S.4 Consensus Mechanhism

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,

Fantom, Near Protocol, Optimism, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and

Avalanche.
Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other

validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction.

- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the

transaction is considered accepted.
2. Snowflake Protocol:

- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.

Validators decide between two conflicting transactions.

- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.

Sustainability indicators according to MiCAR 66 (5)

109



3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.

- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom’s Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.
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Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

Sustainability indicators according to MiCAR 66 (5) 112



- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.
5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.
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2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.
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- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Fantom, Near Protocol, Optimism, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.
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Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.
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- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.

Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.
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NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.
- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

Sustainability indicators according to MiCAR 66 (5) 118



2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.
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2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.
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3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, fantom, near_protocol, optimism, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Uniswap 3
Quantitative information
Field Value| Unit
AMINA (Austria)
51 Name Aktiengesellschaft /
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Field Value| Unit

S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Uniswap /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 3088.51798 kWha/

Qualitative information

S.4 Consensus Mechanism
Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (POA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
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staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:
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Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.
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S.5 Incentive Mechanisms and Applicable Fees
Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:
- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.
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- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.
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Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:
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To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

Euro Coin @

Quantitative information

Field Value| Unit
AMINA (Austria)

> 1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Euro Coin /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 894.58029 kWh;

Qualitative information

S.4 Consensus Mechahism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
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ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

yearn finance @

Quantitative information

Field Value| Unit
AMINA (Austria)

>1Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset yearn finance /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 301.05762 kWha/

Qualitative information

S.4 Consensus Mechanism

yearn finance is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Huobi, Near Protocol, Solana.
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Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.
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Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
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but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Key Features of HECO's Consensus Mechanism:

1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the
network.

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain.
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3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid
confirmation of transactions.

4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):
- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.
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2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

yearn finance is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Huobi, Near Protocol, Solana.
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Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.
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Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks.
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- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.
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Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Sustainability indicators according to MiCAR 66 (5) 138



Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add
blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing
validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the
HECO network. These fees compensate validators for processing and validating transactions.
2. Smart Contract Execution Fees:
Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

Sustainability indicators according to MiCAR 66 (5) 139



2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

Sustainability indicators according to MiCAR 66 (5) 140



4. Smart Contract Fees:
Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, avalanche, binance_smart_chain, ethereum, fantom, gnosis_chain, huobi, near_protocol,
solana is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Pyth Network ®

Quantitative information

Field Value| Unit
AMINA (Austria)

>1 Name Aktiengesellschaft /
S.2 Relevant legal entity identifier 5299005I4LYIFW7GKB54 /
S.3 Name of the crypto-asset Pyth Network /
S.6 Beginning of the period to which the disclosure 2024-10-22 /
relates

S.7 End of the period to which the disclosure relates 2025-10-22 /
S.8 Energy consumption 121.37032 kWha/

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):
- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.
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- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.
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S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana
is calculated first. For the energy consumption of the token, a fraction of the energy consumption of
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the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.
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